Esplorando Il ponderata esponenzialmente Moving volatilità media è la misura più comune del rischio, ma si tratta in diversi sapori. In un precedente articolo, abbiamo mostrato come calcolare semplice volatilità storica. (Per leggere questo articolo, vedere Uso volatilità per valutare i rischi futuri.) Abbiamo usato Googles dati effettivi di prezzo delle azioni al fine di calcolare la volatilità giornaliera sulla base di 30 giorni di dati di stock. In questo articolo, miglioreremo il semplice volatilità e discutere la media mobile esponenziale ponderata (EWMA). Vs. Storico La volatilità implicita In primo luogo, consente di mettere questa metrica in un po 'di prospettiva. Ci sono due approcci: volatilità storica e implicita (o implicite). L'approccio storico presuppone che passato è prologo misuriamo la storia nella speranza che sia predittiva. La volatilità implicita, d'altra parte, ignora la storia si risolve per la volatilità implicita dai prezzi di mercato. Si spera che il mercato conosce meglio e che il prezzo di mercato contiene, anche se implicitamente, una stima di consenso di volatilità. (Per la lettura correlate, vedere gli usi e limiti di volatilità.) Se ci concentriamo solo su tre approcci storici (il alto a sinistra), hanno due punti in comune: Calcolare la serie di rendimenti periodici applicare uno schema di ponderazione In primo luogo, calcolare il ritorno periodico. Questo è in genere una serie di rendimenti giornalieri in cui ogni ritorno è espresso in termini di continuo composte. Per ogni giorno, prendiamo il logaritmo naturale del rapporto tra i prezzi delle azioni (cioè prezzo oggi divisi per prezzo di ieri, e così via). Questo produce una serie di rendimenti giornalieri, da u i u i-m. a seconda di quanti giorni (m giorni) stiamo misurando. Questo ci arriva al secondo passo: E 'qui che i tre approcci differenti. Nel precedente articolo (Utilizzo di volatilità per valutare rischio futuro), abbiamo dimostrato che in un paio di semplificazioni accettabili, la semplice varianza è la media dei rendimenti al quadrato: Si noti che questo riassume ciascuna delle dichiarazioni periodiche, poi divide che totale da parte del numero di giorni o osservazioni (m). Così, la sua realtà solo una media delle dichiarazioni periodiche squadrati. In altre parole, ogni ritorno quadrato viene dato un peso uguale. Quindi, se alfa (a) è un fattore di ponderazione (in particolare, un 1m), quindi un semplice scostamento simile a questa: Il EWMA migliora semplice varianza La debolezza di questo approccio è che tutti i ritorni guadagnano lo stesso peso. Yesterdays (molto recente) di ritorno non ha più influenza sulla varianza rispetto allo scorso mese di ritorno. Questo problema viene risolto utilizzando la media ponderata esponenzialmente movimento (EWMA), in cui i ritorni più recenti hanno un peso maggiore sulla varianza. La media mobile esponenziale ponderata (EWMA) introduce lambda. che è chiamato il parametro smoothing. Lambda deve essere inferiore a uno. In tale condizione, invece di pesi uguali, ogni ritorno quadrato è ponderato con un moltiplicatore come segue: Per esempio, RiskMetrics TM, una società finanziaria gestione del rischio, tende ad usare un lambda di 0,94 o 94. In questo caso, il primo ( più recente) al quadrato ritorno periodico è ponderato in base (1-0,94) (. 94) 0 6. il prossimo ritorno quadrato è semplicemente un lambda-multiplo del peso prima, in questo caso 6 moltiplicato per 94 5.64. E il terzo giorni precedenti peso uguale (1-0,94) (0,94) 2 5.30. Quello sensi esponenziale EWMA: ciascun peso è un moltiplicatore costante (cioè lambda, che deve essere inferiore a uno) della prima peso giorni. Questo assicura una varianza che viene ponderato o sbilanciata verso i dati più recenti. (Per ulteriori informazioni, controllare il foglio di lavoro Excel per Googles volatilità.) La differenza tra semplicemente volatilità e EWMA per Google è indicato di seguito. La volatilità semplice pesa in modo efficace ogni ritorno periodico da 0.196 come mostrato nella colonna O (abbiamo avuto due anni di dati di prezzo delle azioni quotidiane. Cioè 509 rendimenti giornalieri e il 1509 0.196). Ma si noti che Colonna P assegna un peso di 6, poi 5,64, quindi 5.3 e così via. Quello è l'unica differenza tra semplice varianza e EWMA. Ricorda: Dopo sommiamo l'intera serie (in Q colonna) abbiamo la varianza, che è il quadrato della deviazione standard. Se vogliamo la volatilità, abbiamo bisogno di ricordare di prendere la radice quadrata di tale varianza. Che cosa è la differenza di volatilità giornaliera tra la varianza e EWMA in caso Googles suo significativo: La semplice varianza ci ha dato una volatilità giornaliera di 2,4 ma il EWMA ha dato una volatilità giornaliera di soli 1.4 (vedere il foglio di calcolo per i dettagli). A quanto pare, Googles volatilità si stabilì più di recente, pertanto, una semplice variazione potrebbe essere artificialmente alto. Di oggi Variance è una funzione di preavviso Pior giorni Varianza Youll abbiamo bisogno di calcolare una lunga serie di pesi in modo esponenziale in declino. Abbiamo solito facciamo la matematica qui, ma una delle migliori caratteristiche del EWMA è che l'intera serie riduce convenientemente ad una formula ricorsiva: ricorsivo significa che i riferimenti varianza di oggi (cioè è una funzione del giorni prima varianza). È possibile trovare questa formula nel foglio di calcolo anche, e produce lo stesso risultato esatto come il calcolo longhand Dice: varianza di oggi (sotto EWMA) uguale varianza di ieri (ponderato per lambda) più il rendimento di ieri al quadrato (pesato da una lambda meno). Si noti come stiamo solo aggiungendo due termini insieme: ieri varianza ponderata e ieri ponderati, al quadrato di ritorno. Anche così, lambda è il nostro parametro smoothing. Un lambda più alto (ad esempio, come RiskMetrics 94) indica più lento decadimento della serie - in termini relativi, stiamo per avere più punti di dati nella serie e che stanno per cadere più lentamente. D'altra parte, se riduciamo lambda, indichiamo superiore decadimento: i pesi cadere fuori più rapidamente e, come risultato diretto del rapido decadimento, meno punti dati sono usati. (Nel foglio di calcolo, lambda è un ingresso, in modo da poter sperimentare con la sua sensibilità). Riassunto La volatilità è la deviazione standard istantanea di un magazzino e la metrica di rischio più comune. È anche la radice quadrata della varianza. Siamo in grado di misurare la varianza storicamente o implicitamente (volatilità implicita). Quando si misura storicamente, il metodo più semplice è semplice varianza. Ma la debolezza con una semplice varianza è tutti i ritorni ottenere lo stesso peso. Quindi ci troviamo di fronte un classico trade-off: vogliamo sempre più dati ma più dati che abbiamo più il nostro calcolo è diluito da dati lontani (meno rilevanti). La media mobile esponenziale ponderata (EWMA) migliora semplice varianza assegnando pesi alle dichiarazioni periodiche. In questo modo, siamo in grado di utilizzare una dimensione sia grande campione, ma anche dare maggior peso ai rendimenti più recenti. (Per visualizzare un tutorial film su questo argomento, visitare il Bionic Turtle.) Il ponderata esponenzialmente media mobile (EWMA) è una statistica per il monitoraggio del processo che media i dati in un modo che dà meno peso e meno di dati così come sono ulteriormente rimosso nel tempo. Confronto di carta di controllo di Shewhart e EWMA tecniche Carte di controllo per la tecnica di controllo grafico Shewhart, la decisione relativa allo stato del controllo del processo in qualsiasi momento, (t), dipende unicamente dal più recente misura dal processo e, naturalmente, il grado di veridicità delle stime dei limiti di controllo di dati storici. Per la tecnica di controllo EWMA, la decisione dipende dalla statistica EWMA, che è una media ponderata esponenzialmente di tutti i dati precedenti, compresa la misurazione più recente. A scelta del fattore di ponderazione, (lambda), la procedura di controllo EWMA può essere sensibile ad una piccola o graduale deriva nel processo, mentre la procedura di controllo Shewhart può reagire solo quando l'ultimo punto di dati è fuori di un limite di controllo. Definizione di EWMA La statistica calcolata è: Mbox t lambda Yt (1-lambda) Mbox ,,, Mbox ,,, t 1, 2,, ldots ,, n. dove (mbox 0) è la media dei dati storici (target) (YT) è l'osservazione in tempo (t) (n) è il numero di osservazioni da monitorare tra cui (mbox 0) (0 Interpretazione della carta di controllo EWMA Il rosso punti sono i dati grezzi la linea frastagliata è la statistica EWMA nel corso del tempo. il grafico ci dice che il processo è sotto controllo perché tutti (Mbox t) si trovano tra i limiti di controllo. Tuttavia, sembra che ci sia una tendenza al rialzo per gli ultimi 5 approccio periods. The EWMA ha una caratteristica interessante:. richiede i dati relativamente poco memorizzati per aggiornare la nostra stima in qualsiasi momento, abbiamo solo bisogno di una stima preliminare del tasso di varianza e il valore di osservazione più recente un obiettivo secondario di EWMA è di seguire. variazioni della volatilità. per piccoli valori, recenti osservazioni riguardano la stima tempestivamente. per i valori più vicini ad uno, i cambiamenti di stima lentamente sulla base di recenti cambiamenti nei rendimenti del sottostante. le RiskMetrics database (prodotto da JP Morgan e reso pubblico disponibile ) utilizza il EWMA con per l'aggiornamento volatilità giornaliera. IMPORTANTE: La formula EWMA non assume un livello di scostamento medio lungo periodo. Così, il concetto di volatilità significa reversione non viene catturata dal EWMA. I modelli ARCHGARCH sono più adatti per questo scopo. Un obiettivo secondario di EWMA è quello di tenere traccia delle modifiche della volatilità, quindi per piccoli valori, recente osservazione influenza la stima prontamente, e per i valori più vicini a uno, la stima cambia lentamente ai recenti cambiamenti nei rendimenti del sottostante. Il database RiskMetrics (prodotto da JP Morgan) e reso pubblico a disposizione nel 1994, utilizza il modello EWMA con per l'aggiornamento stima della volatilità giornaliera. L'azienda ha trovato che in una serie di variabili di mercato, il valore di dà previsione della varianza che più si avvicinano al tasso di varianza realizzata. I tassi di varianza realizzati in un particolare giorno è stato calcolato come media altrettanto ponderato sui successivi 25 giorni. Analogamente, per calcolare il valore ottimale di lambda per il nostro insieme di dati, è necessario calcolare la volatilità realizzata in ogni punto. Ci sono diversi metodi, in modo da scegliere uno. Quindi, calcolare la somma degli errori al quadrato (SSE) tra stima EWMA e volatilità realizzata. Infine, minimizzare la SSE variando il valore lambda. Sembra semplice È. La sfida più grande è quello di concordare su un algoritmo per calcolare volatilità realizzata. Per esempio, la gente di RiskMetrics scelto il successivo di 25 giorni per calcolare tasso di varianza realizzata. Nel tuo caso, si può scegliere un algoritmo che utilizza Volume giornaliero, Hilo eo prezzi OPEN-CLOSE. Q 1: Possiamo usare EWMA per stimare (o previsione) della volatilità più di un passo avanti La rappresentazione volatilità EWMA non assume una volatilità media di lungo periodo, e quindi, per qualsiasi orizzonte di previsione al di là di uno stadio, il EWMA restituisce una costante valore:
No comments:
Post a Comment